<address id="9fb5l"></address>

        . 24/7 Space News .




        Subscribe to our free daily newsletters



        SOLAR SCIENCE
        Solar storm forecasts for Earth improved with help from the public
        by Staff Writers
        Reading UK (SPX) Sep 21, 2020

        The Solar Stormwatch project was led by Reading co-author Professor Chris Scott. It asked volunteers to trace the outline of thousands of past CMEs captured by Heliospheric Imagers - specialist, wide-angle cameras - on board two NASA STEREO spacecraft, which orbit the Sun and monitor the space between it and Earth.

        Solar storm analysis carried out by an army of citizen scientists has helped researchers devise a new and more accurate way of forecasting when Earth will be hit by harmful space weather. Scientists at the University of Reading added analysis carried out by members of the public to computer models designed to predict when coronal mass ejections (CMEs) - huge solar eruptions that are harmful to satellites and astronauts - will arrive at Earth.

        The team found forecasts were 20% more accurate, and uncertainty was reduced by 15%, when incorporating information about the size and shape of the CMEs in the volunteer analysis. The data was captured by thousands of members of the public during the latest activity in the Solar Stormwatch citizen science project, which was devised by Reading researchers and has been running since 2010.

        The findings support the inclusion of wide-field CME imaging cameras on board space weather monitoring missions currently being planned by agencies like NASA and ESA.

        Dr Luke Barnard, space weather researcher at the University of Reading's Department of Meteorology, who led the study, said: "CMEs are sausage-shaped blobs made up of billions of tonnes of magnetised plasma that erupt from the Sun's atmosphere at a million miles an hour. They are capable of damaging satellites, overloading power grids and exposing astronauts to harmful radiation.

        "Predicting when they are on a collision course with Earth is therefore extremely important, but is made difficult by the fact the speed and direction of CMEs vary wildly and are affected by solar wind, and they constantly change shape as they travel through space.

        "Solar storm forecasts are currently based on observations of CMEs as soon as they leave the Sun's surface, meaning they come with a large degree of uncertainty. The volunteer data offered a second stage of observations at a point when the CME was more established, which gave a better idea of its shape and trajectory.

        "The value of additional CME observations demonstrates how useful it would be to include cameras on board spacecraft in future space weather monitoring missions. More accurate predictions could help prevent catastrophic damage to our infrastructure and could even save lives."

        In the study, published in AGU Advances, the scientists used a brand new solar wind model, developed by Reading co-author Professor Mathew Owens, for the first time to create CME forecasts.

        The simplified model is able to run up to 200 simulations - compared to around 20 currently used by more complex models - to provide improved estimates of the solar wind speed and its impact on the movement of CMEs, the most harmful of which can reach Earth in 15-18 hours.

        Adding the public CME observations to the model's predictions helped provide a clearer picture of the likely path the CME would take through space, reducing the uncertainty in the forecast. The new method could also be applied to other solar wind models.

        The Solar Stormwatch project was led by Reading co-author Professor Chris Scott. It asked volunteers to trace the outline of thousands of past CMEs captured by Heliospheric Imagers - specialist, wide-angle cameras - on board two NASA STEREO spacecraft, which orbit the Sun and monitor the space between it and Earth.

        The scientists retrospectively applied their new forecasting method to the same CMEs the volunteers had analysed to test how much more accurate their forecasts were with the additional observations.

        Using the new method for future solar storm forecasts would require swift real-time analysis of the images captured by the spacecraft camera, which would provide warning of a CME being on course for Earth several hours or even days in advance of its arrival.

        Research paper


        Related Links
        University Of Reading
        Solar Science News at SpaceDaily


        Thanks for being there;
        We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

        With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

        Our news coverage takes time and effort to publish 365 days a year.

        If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
        SpaceDaily Monthly Supporter
        $5+ Billed Monthly


        paypal only
        SpaceDaily Contributor
        $5 Billed Once


        credit card or paypal


        SOLAR SCIENCE
        Sunspot cycle is stabilizing, according to worldwide panel of experts
        Sunspot, NM (SPX) Sep 16, 2020
        a consortium of solar science experts declared consensus on the next solar cycle. The cycle, which indicates the intensity and timing of the Sun's activity, fluctuates every 11 years or so. The cycle is based on the number of sunspots visible on the Sun's surface over time and changes due to the dynamic magnetic field. "We came to a consensus that the next solar cycle will be very similar to the last one" explains Dr. Gordon Petrie of the NSF's National Solar Observatory, who was a member of the c ... read more

        Comment using your Disqus, Facebook, Google or Twitter login.



        Share this article via these popular social media networks
        del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

        SOLAR SCIENCE
        NASA's Partnership Between Art and Science: A Collaboration to Cherish

        Small leak of ammonia detected at US Segment of ISS

        Israeli tech start-ups take on the Emirates

        ISS may need to evade US Military cubesat

        SOLAR SCIENCE
        NASA technology enables precision landing without a pilot

        Air Force destroys surrogate cruise missile in hypervelocity projectile test

        China's launch of new satellite fails

        Northrop Grumman and NASA donate Shuttle boosters to California Science Center

        SOLAR SCIENCE
        Study shows difficulty in finding evidence of life on Mars

        AFRL technology traveling to Mars

        Using chitin to manufacture tools and shelters on Mars

        China's Mars probe travels 137 mln km

        SOLAR SCIENCE
        China's new carrier rocket available for public view

        China sends nine satellites into orbit by sea launch

        Chinese spacecraft launched mystery object into space before returning to Earth

        China's reusable spacecraft returns to Earth after 2 days

        SOLAR SCIENCE
        Rocket policy must not be limited by capital, liability: Startups

        SpaceX postpones Starlink launch from Florida

        Intelsat entrusts Arianespace for the launch of three C-band satellites on Ariane 5 and Ariane 6

        Dragonfly Aerospace emerges from SCS Aerospace Group

        SOLAR SCIENCE
        Mesh reflector for shaped radio beams

        Zombie satellites and rogue debris threatening existence of ISS

        Making waves in space

        How Algorithmic Darwinism is propelling space evolution

        SOLAR SCIENCE
        A white dwarf's surprise planetary companion

        How protoplanetary rings form in primordial gas clouds

        NASA missions spy first possible survivor planet hugging white dwarf star

        Venus is one stop in our search for life

        SOLAR SCIENCE
        Astronomers characterize Uranian moons using new imaging analysis

        Jupiter's moons could be warming each other

        Atomistic modelling probes the behavior of matter at the center of Jupiter

        Technology ready to explore subsurface oceans on Ganymede











        The content herein, unless otherwise known to be public domain, are Copyright 1995-2020 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.


        一晚破了3个处