<address id="9fb5l"></address>

        . 24/7 Space News .




        Subscribe to our free daily newsletters



        IRON AND ICE
        Ryugu's rocky past laid bare
        by Staff Writers
        Tokyo, Japan (SPX) Sep 22, 2020

        Hayabusa2 captures images of unusually bright S-type rocks that stand out from the darker C-type material that makes up the bulk of Ryugu.

        The asteroid Ryugu may look like a solid piece of rock, but it's more accurate to liken it to an orbiting pile of rubble. Given the relative fragility of this collection of loosely bound boulders, researchers believe that Ryugu and similar asteroids probably don't last very long due to disruptions and collisions from other asteroids. Ryugu is estimated to have adopted its current form around 10 million to 20 million years ago, which sounds like a lot compared to a human lifespan, but makes it a mere infant when compared to larger solar system bodies.

        "Ryugu is too small to have survived the whole 4.6 billion years of solar system history," said Professor Seiji Sugita from the Department of Earth and Planetary Science at the University of Tokyo.

        "Ryugu-sized objects would be disrupted by other asteroids within several hundred million years on average. We think Ryugu spent most of its life as part of a larger, more solid parent body. This is based on observations by Hayabusa2 which show Ryugu is very loose and porous. Such bodies are likely formed from reaccumulations of collision debris."

        As well as giving researchers data to measure Ryugu's density, Hayabusa2 also collects information about the spectral properties of the asteroid's surface features. For this study in particular, the team was keen to explore the subtle differences between the various kinds of boulders on or embedded in the surface. They determined there are two kinds of bright boulders on Ryugu, and the nature of these gives away how the asteroid may have formed.

        "Ryugu is considered a C-type, or carbonaceous, asteroid, meaning it's primarily composed of rock that contains a lot of carbon and water," said postdoctoral researcher Eri Tatsumi. "As expected, most of the surface boulders are also C-type; however, there are a large number of S-type, or siliceous, rocks as well. These are silicate-rich, lack water-rich minerals and are more often found in the inner, rather than outer, solar system."

        Given the presence of S- as well as C-type rocks on Ryugu, researchers are led to believe the little rubble-pile asteroid likely formed from the collision between a small S-type asteroid and Ryugu's larger C-type parent asteroid. If the nature of this collision had been the other way around, the ratio of C- to S-type material in Ryugu would also be reversed.

        Hayabusa2 is now on its return journey to Earth and is expected to deliver its cargo of samples on Dec. 6 of this year. Researchers are keen to study this material to add evidence for this hypothesis and to elucidate many other things about our little rocky neighbor.

        "We used the optical navigation camera on Hayabusa2 to observe Ryugu's surface in different wavelengths of light, and this is how we discovered the variation in rock types. Among the bright boulders, C and S types have different albedos, or reflective properties," said Tatsumi.

        "But I eagerly await the analysis of the return samples, as this will confirm theories and improve the accuracy of our knowledge about Ryugu. What will be really interesting is knowing how Ryugu differs from meteorites on Earth, as this could in turn tell us something new about the history of Earth and the solar system as a whole."

        Ryugu is not the only near-Earth asteroid scientists are currently exploring with probes, though. Another international team under NASA is currently studying the asteroid Bennu with the OSIRIS-REx spacecraft in orbit around it. Tatsumi also collaborates with researchers on that project and the teams share their research findings.

        "When I was a child, I felt the other planets were always out of reach. But with the power of the instruments on our spacecraft, the images are so sharp and clear it feels like you could almost touch the surface of these asteroids," said Tatsumi.

        "Right now, I'm studying asteroids with giant telescopes in the Canary Islands. And one day, I hope to also explore icy comets and trans-neptunian objects such as dwarf planets. In this way, we may soon fully understand and appreciate how our solar system began."

        Research Report: Collisional history of Ryugu's parent body from bright surface boulders


        Related Links
        University Of Tokyo
        Asteroid and Comet Mission News, Science and Technology


        Thanks for being there;
        We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

        With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

        Our news coverage takes time and effort to publish 365 days a year.

        If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
        SpaceDaily Monthly Supporter
        $5+ Billed Monthly


        paypal only
        SpaceDaily Contributor
        $5 Billed Once


        credit card or paypal


        IRON AND ICE
        Industry starts work on Europe's Hera planetary defence mission
        Paris (ESA) Sep 16, 2020
        ESA awarded a 129.4 million euro contract covering the detailed design, manufacturing and testing of Hera, the Agency's first mission for planetary defence. This ambitious mission will be Europe's contribution to an international asteroid deflection effort, set to perform sustained exploration of a double asteroid system. Hera - named after the Greek goddess of marriage - will be, along with NASA's Double Asteroid Redirect Test (DART) spacecraft, humankind's first probe to rendezvous with a binary ... read more

        Comment using your Disqus, Facebook, Google or Twitter login.



        Share this article via these popular social media networks
        del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

        IRON AND ICE
        NASA's Partnership Between Art and Science: A Collaboration to Cherish

        Small leak of ammonia detected at US Segment of ISS

        Israeli tech start-ups take on the Emirates

        ISS may need to evade US Military cubesat

        IRON AND ICE
        General Atomics delivers nuclear thermal propulsion concept to NASA

        NASA's 2021 Student Launch Competition Opens

        Complex to build 20 solid-propellant Long March 11 carrier craft every year

        NASA technology enables precision landing without a pilot

        IRON AND ICE
        AFRL technology traveling to Mars

        Using chitin to manufacture tools and shelters on Mars

        Study shows difficulty in finding evidence of life on Mars

        China's Mars probe travels 137 mln km

        IRON AND ICE
        China's new carrier rocket available for public view

        China sends nine satellites into orbit by sea launch

        Chinese spacecraft launched mystery object into space before returning to Earth

        China's reusable spacecraft returns to Earth after 2 days

        IRON AND ICE
        ESA brings space industry together online

        UK's OneWeb resumes satellite production after bankruptcy

        SpaceX postpones Starlink launch from Florida

        Dragonfly Aerospace emerges from SCS Aerospace Group

        IRON AND ICE
        Planets take virtual shape on Earth with NASA knowledge and imagery

        How Algorithmic Darwinism is propelling space evolution

        Mesh reflector for shaped radio beams

        Zombie satellites and rogue debris threatening existence of ISS

        IRON AND ICE
        A white dwarf's surprise planetary companion

        How protoplanetary rings form in primordial gas clouds

        NASA missions spy first possible survivor planet hugging white dwarf star

        Device could help detect signs of extraterrestrial life

        IRON AND ICE
        Astronomers characterize Uranian moons using new imaging analysis

        Jupiter's moons could be warming each other

        Atomistic modelling probes the behavior of matter at the center of Jupiter

        Technology ready to explore subsurface oceans on Ganymede













        The content herein, unless otherwise known to be public domain, are Copyright 1995-2021 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.


        一晚破了3个处