<address id="9fb5l"></address>

        . 24/7 Space News .




        Subscribe to our free daily newsletters



        CARBON WORLDS
        New Insights into the Origin of Diamonds in Meteorites
        by Staff Writers
        Houston TX (SPX) Sep 29, 2020

        Microphotograph of NWA 7983 ureilite showing areas of diamond and graphite surrounded by Mg-Fe-Ca silicate minerals. Credit: Oliver Christ.

        Scientists have offered new insights into the origin of diamonds in ureilites (a group of stony meteorites). These diamonds most likely formed by rapid shock transformation from graphite (the common low-pressure form of pure carbon) during one or more major impacts into the ureilite parent asteroid in the early solar system.

        Previously, researchers have proposed that diamonds in ureilites formed like those on Earth - deep in the mantle of the planet, where the high pressures needed to form diamond (a very dense, hard form of pure carbon), are created by the weight of overlying rock. If diamonds in ureilites formed this way, then the original parent body on which they formed must have been a large protoplanet - at least the size of Mars or Mercury.

        However, new research conducted by Prof. Fabrizio Nestola (University of Padova, Italy), Dr. Cyrena Goodrich (Universities Space Research Association at the Lunar and Planetary Institute) and their colleagues show there is no evidence requiring formation under the high static pressures and long growth time conditions of a planet's deep interior.

        The team investigated diamonds in three ureilite samples using electron microscopy, micro X-ray diffraction, and Raman (laser) spectroscopy. Their investigations revealed both large (up to 100 micrometers in size) and small (nanometers in size) grains of diamond, along with metallic iron and graphite, in the carbon-rich regions located among the silicate mineral grains in these samples.

        "We discovered the largest single-crystal diamond ever observed in a ureilite," says Dr. Cyrena Goodrich. "Importantly, the ureilites that we investigated have all been highly shocked, based on the evidence from their silicate minerals, which strongly suggests that both large and small diamonds in these rocks formed from original graphite via shock processes."

        The origin of diamonds in ureilites has important implications for models of planetary formation in the early solar system. Present day asteroids, from which most meteorites originate, are very small compared to the planets. However, planetary formation models predict that planets formed as a result of the accumulation of Moon- to Mars-sized planetary embryos (protoplanets).

        Advocates of the high static pressure hypothesis for the origin of ureilite diamonds argue that the ureilite parent body was one of these embryos. However, Nestola and co-authors demonstrate that the presence of diamonds in ureilites does not require a Mars-sized parent body.

        Previously it was thought that micrometer-sized diamonds were too large to have formed in the short time periods (e.g., microseconds) during which peak pressures are maintained in impact events. However, Nestola et al. calculated that peak shock pressures could last for 4-5 seconds during a major impact such as that inferred for the ureilite parent body.

        This is sufficient for formation of 100 micrometer-sized diamonds when catalyzed by the presence of metal, a process commonly used in production of diamonds in industry. Since metal is ubiquitously associated with the carbon phases in ureilites, catalyzed formation of large diamonds from original graphite under shock compression is very likely.

        Dr. Goodrich further notes, "Our findings are important because they not only indicate a shock origin for the diamonds in ureilites, as discussed by many previous researchers, they also refute arguments that have been made for the large parent body hypothesis. This type of scientific debate and testing of hypotheses is an essential part of making progress in science."

        Research Report:


        Related Links
        Lunar and Planetary Institute
        Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


        Thanks for being there;
        We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

        With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

        Our news coverage takes time and effort to publish 365 days a year.

        If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
        SpaceDaily Monthly Supporter
        $5+ Billed Monthly


        paypal only
        SpaceDaily Contributor
        $5 Billed Once


        credit card or paypal


        CARBON WORLDS
        Our seas are capturing more carbon than expected
        Paris (ESA) Sep 23, 2020
        Earth's oceans help to slow global warming by absorbing carbon from our atmosphere - but fully observing this crucial process in the upper ocean and lower atmosphere is difficult, as measurements are taken not where it occurs, the sea surface, but several metres below. New research uses data from ESA, NASA and NOAA satellites to rectify this, and finds that far more carbon is absorbed by the oceans than previously thought. Much of the carbon dioxide emitted by human activity does not stay in the a ... read more

        Comment using your Disqus, Facebook, Google or Twitter login.



        Share this article via these popular social media networks
        del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

        CARBON WORLDS
        Russia reports 'non-standard' air leak on Space Station

        Russia to launch two new modules to Space Station in April, September 2021

        Astronauts close to finding source of air leak at Space Station

        ISS Crew continues troubleshooting as tests isolate small leak

        CARBON WORLDS
        SpaceX improved Crew Dragon capsule for planned Oct. 31 launch

        NASA, SpaceX to launch first Commercial Crew rotation mission to International Space Station

        Space Force to start flying on reused SpaceX rockets

        Blue Origin postpones Texas launch of experiments for NASA, universities

        CARBON WORLDS
        Study: Mars has four bodies of water underneath surface

        The topography of the Jezero crater landing site of NASA's Mars 2020 mission

        Could life exist deep underground on Mars

        Perseverance will use x-rays to hunt fossils

        CARBON WORLDS
        NASA chief warns Congress about Chinese space station

        China's new carrier rocket available for public view

        China sends nine satellites into orbit by sea launch

        Chinese spacecraft launched mystery object into space before returning to Earth

        CARBON WORLDS
        Redcliffe Partners' Ukrainian Space Regulation Review

        SpaceX postpones Starlink launch as thick clouds persist

        Swarm announces pricing for world's lowest-cost satellite communications network

        Machine-learning nanosats to inform global trade

        CARBON WORLDS
        18 SPCS now predicts debris-on-debris collisions in space, enhancing Space Domain Awareness for all

        Radiation levels on Moon 2.6 times greater than ISS: study

        Satcom to foster resilient digital systems

        Arianespace to resume OneWeb constellation deployment

        CARBON WORLDS
        Search for New Worlds at Home with NASA's Planet Patrol Project

        CHEOPS space telescope makes ultra-precise temperature and size measurements of an unusual giant planet

        Let them eat rocks

        Evolution of radio-resistance is more complicated than previously thought

        CARBON WORLDS
        SwRI study describes discovery of close binary trans-Neptunian object

        JPL meets unique challenge, delivers radar hardware for Jupiter Mission

        Astronomers characterize Uranian moons using new imaging analysis

        Jupiter's moons could be warming each other













        The content herein, unless otherwise known to be public domain, are Copyright 1995-2021 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.


        一晚破了3个处