<address id="9fb5l"></address>

        . 24/7 Space News .




        Subscribe to our free daily newsletters



        OUTER PLANETS
        Atomistic modelling probes the behavior of matter at the center of Jupiter
        by Staff Writers
        Zurich, Switzerland (SPX) Sep 10, 2020

        An inexpensive machine-learning potential allowed for the investigation of hydrogen phase transitions for temperatures between 100 and 4000 K, and pressures between 25 and 400 gigapascals, with converged simulation size and time.

        The hydrogen atom, with its single proton orbited by a single electron, is arguably the simplest material out there. Elemental hydrogen can nonetheless exhibit extremely complex behavior - at megabar pressures, for example, it undergoes a transition from being an insulating fluid to being a metallic conductive fluid.

        While the transition is fascinating simply from the point of view of condensed matter physics and materials science - liquid-liquid phase transitions are rather unusual - it also has significant implications for planetary science, since liquid hydrogen makes up the interior of giant planets such as Jupiter and Saturn as well as brown dwarf stars.

        Understanding the liquid-liquid transition is then a central part of accurately modelling the structure and evolution of such planets and standard models generally assume a sharp transition between the insulating molecular fluid and the conducting metallic fluid. This sharp transition is linked to a discontinuity in density and therefore a clear border between an inner metallic mantle and an outer insulating mantle in these planets.

        While scientists have made considerable efforts to explore and characterize this transition as well as dense hydrogen's many unusual properties - including rich and poorly understood solid polymorphism, anomalous melting line, and the possible transition to a superconducting state - laboratory investigation is complicated because of the need to create a controllable high pressure and temperature environment as well as to confine hydrogen during measurements.

        Experimental research has then not yet reached a consensus on whether the transition is abrupt or smooth and different experiments have located the liquid-liquid transition at pressures that are as much as 100 gigapascals apart.

        "The kind of experiment that you need to be able to do to be able to study a material in the same range of pressures that you find on Jupiter is highly non-trivial," Ceriotti said. "As a result of the constraints, many different experiments have been performed, with results that are very different from each other."

        Though modelling techniques introduced in the last decade have allowed scientists to better understand the system, the huge computational expense involved in essentially solving the quantum mechanical problem for the behavior of hydrogen atoms has meant that these simulations were necessarily limited in time, to a scale of a few picoseconds, and to a scope of just a few hundred atoms. Results here have also been mixed.

        In order to examine the problem more thoroughly, Ceriotti and colleagues Bingqing Chen at the University of Cambridge and Guglielmo Mazzola at IBM Research Zurich used an artificial neural network architecture to construct a machine learning potential.

        Based on a small number of very accurate (and time consuming) calculations of the electronic structure problem, the inexpensive machine-learning potential allowed for the investigation of hydrogen phase transitions for temperatures between 100 and 4000 K, and pressures between 25 and 400 gigapascals, with converged simulation size and time.

        The simulations, mostly run on EPFL computers at SCITAS, took just a few weeks compared with the 100s of millions of years in CPU time that it would have taken to run traditional simulations for solving the quantum mechanical problem.

        The resulting theoretical study of the phase diagram of dense hydrogen allowed the team to reproduce the re-entrant melting behavior and the polymorphism of the solid phase. Simulations based on the machine learning potential showed, contrary to the common assumption that hydrogen undergoes a first-order phase transition, evidence of continuous metallization in the liquid. This in turn not only suggests a smooth transition between insulating and metallic layers in giant gas planets, it also reconciles existing discrepancies between both lab and modelling experiments.

        "If high-pressure hydrogen is supercritical, as our simulations suggest, there is no sharp transition where all the properties of the fluid have a sudden jump," Ceriotti said. "Depending on the exact property you probe, and the way you define a threshold, you would find the transition to occur at a different temperature or pressure. This may reconcile a decade of controversial results from high pressure experiments. Different experiments have measured slightly different things and they haven't been able to identify the transition at the same point because there is no sharp transition."

        In terms of reconciling their results with some earlier modelling that indeed identified a sharp transition, Ceriotti says that they could only observe a clear-cut jump in properties when performing small simulations, and that in those cases they could trace the jump to solidification, rather than to a liquid-liquid transition.

        The sharp transition observed should then rather be understood as an artifact of the limitations of using simulations based on traditional physics-based modelling. The machine learning approach has allowed the researchers to run simulations that are typically between 4 and 10 times larger and several 100s of times longer. This gives them a much better overview of the entire process.

        While it was applied in this particular paper to an issue linked to planetary science, the same technology can be applied to any problem in materials science or chemistry, Ceriotti said.

        "This is a demonstration of a technology that allows simulations to get into a regime that has been impossible to reach," Ceriotti said. "The same technology that we could use to understand better the behavior of planets can also be used to design better drugs or more performing materials. There really is the potential for a simulation-driven change of the way we understand the behavior of everyday, as well as exotic, matter."

        Research paper


        Related Links
        National Centre Of Competence In Research
        The million outer planets of a star called Sol


        Thanks for being there;
        We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

        With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

        Our news coverage takes time and effort to publish 365 days a year.

        If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
        SpaceDaily Monthly Supporter
        $5+ Billed Monthly


        paypal only
        SpaceDaily Contributor
        $5 Billed Once


        credit card or paypal


        OUTER PLANETS
        Technology ready to explore subsurface oceans on Ganymede
        Kiruna, Sweden (SPX) Aug 24, 2020
        The first of two Swedish-led Jupiter instruments has left the Swedish Institute of Space Physics (IRF) to take its place on the European spacecraft JUICE. The Radio and Plasma Wave Investigation instrument (RPWI) will measure electric and magnetic fields to identify and map the oceans beneath the frozen ice cover of the moon Ganymede. In 2013, IRF was selected by the European Space Agency (ESA) to participate in one of their largest projects in planetary explorat ... read more

        Comment using your Disqus, Facebook, Google or Twitter login.



        Share this article via these popular social media networks
        del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

        OUTER PLANETS
        Backbone of a spacecraft for missions to deep space

        NASA declines seat on Russia's Soyuz for US astronaut ISS flight

        Boeing's Starliner makes progress ahead of flight test with astronauts

        NASA seeks next class of Flight Directors for human spaceflight missions

        OUTER PLANETS
        With DUST-2 launch, NASA's sounding rocket program is back on the range

        Gilmour Space to launch Space Machines Company on first Eris rocket

        NASA conducts SLS booster test for future Artemis missions

        Northrop Grumman tests Space Launch System booster for Artemis

        OUTER PLANETS
        Surprise on Mars

        NASA Readies Perseverance Mars Rover's Earthly Twin

        Nereidum Montes a mountain landscape formed by water, ice and wind

        ERC Space and Robotics Event 2020

        OUTER PLANETS
        China's reusable spacecraft returns to Earth after 2 days

        Mars-bound Tianwen 1 hits milestone

        China's Mars probe over 8m km away from Earth

        China seeks payload ideas for mission to moon, asteroid

        OUTER PLANETS
        Dragonfly Aerospace emerges from SCS Aerospace Group

        GMV announces the merger of its UK Company and NSL

        Satellogic launches 11th satellite to low-earth orbit

        Wanted: your ideas for ESA's future space missions

        OUTER PLANETS
        Making Perwave

        Next artificial intelligence mission selected

        Morocco, Netherlands, India, UAE to buy Longbow Fire Control Radars

        US military sticks with Microsoft for $10 bn cloud contract

        OUTER PLANETS
        Telescope finds no signs of alien technology in 10 million star systems

        SETI Institute and GNU Radio join forces

        New observations show planet-forming disc torn apart by its three central stars

        Study pinpoints process that might have led to first organic molecules

        OUTER PLANETS
        Technology ready to explore subsurface oceans on Ganymede

        Large shift on Europa was last event to fracture its surface

        The Sun May Have Started Its Life with a Binary Companion

        Ganymede covered by giant crater













        The content herein, unless otherwise known to be public domain, are Copyright 1995-2021 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.


        一晚破了3个处